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Abstract 

The ability to track the structural condition of existing structures is one of the main concerns 
of bridge owners and operators. The increasing demand for civil infrastructures, the aging of existing 
assets, and the strengthening of safety and liability laws have led to the inclusion of structural health 
monitoring (SHM) techniques in the structural management process. Furthermore, with the latest 
developments in the sensors field and computational power, real-scale SHM systems’ deployment has 
become logistically and economically feasible. From this perspective, extensive research on structural 
health monitoring has been developed in the last decades. However, the transfer rate from laboratory 
experiments to real-case applications is still unsatisfactory. This paper addresses the deployment of 
a real-case SHM system based on long-gauge FBG sensors (LGFBG) on a 60-year old prestressed 
highway bridge in Neckarsulm, Germany. The system has been running uninterruptedly for over 
three years, generating dozens of terabytes of measured data. The authors present an overview of the 
deployed SHM system, including: the data management system developed to handle large amounts of 
data; the novel real-time analysis algorithm for condition monitoring designed to automatically detect 
unexpected events within a multitude of random dynamic loads; and the hybrid methodology for model 
updating and damage identification built on data feature extraction using the principal component 
analysis (PCA), finite element (FE) simulation, and stochastic simulation to quantify the damage level 
of the monitored prestressed bridge. Finally, the authors discuss the main contributions to the field of 
SHM as well as the lessons learned during the three years of the monitoring campaign.  
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Introduction 

Transportation infrastructure plays a crucial 
role in our society, enabling people to engage in 
activities that produce private, public, and social 
benefits (Frischmann 2012). With relevance to large 
structures, bridge structures are built to connect 
people, shorten travel time, cross obstacles, improve 
traffic flow at complex crossroads, and allow access to 
inaccessible regions. In this sense, the socioeconomic 
impact of an inoperant bridge and the life-threatening 
consequences of a damaged and unattended bridge 
network can be immeasurable. Hence, the capability 
to detect, quantify, and predict damages is the utmost 
desire of bridge owners to allow an effective and safe 

structural condition assessment. Traditionally, the 
practice of periodic visual inspection predominates 
in maintenance programs throughout the world 
(Li et al. 2016). However, it is known that visual 
inspections are insufficient to satisfy the current 
needs for bridge maintenance (Cho et al. 2015; Lynch 
2007). Therefore, including non-destructive damage 
detection and structural health monitoring (SHM) 
techniques in the structural management process has 
become increasingly sought (Jang et al. 2011; Spencer 
et al. 2004).  

SHM strategies can be divided into two 
categories according to the presence or absence of 
physics-based numerical models: model-based and 
data-driven methods (Catbas et al. 2013). Modelbased 
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methods, also known as behavior models, are typically 
run by optimizing the discrepancy between measured 
structural responses and FE model predictions in 
a process called model updating. The data-driven 
methods, called model-free, dispense information 
about structural physical responses. Instead, statistical 
parameters sensitive to structural changes are extracted 
from a baseline condition using approaches such as 
the principal component analysis (PCA) (Kumar et al. 
2020), robust regression analysis (RRA) (Kromanis and 
Kripakaran 2014), and multi-linear regression (MRL) 
(Cavadas et al. 2013). Therefore, in SHM of existing 
structures where the detection of new damages and the 
estimation of the actual structural deterioration level are 
desired, the advantages of data-driven and model-based 
methods can be combined to enhance the condition 
assessment process (Malekzadeh et al. 2015). 

Although many successful deployments of SHM 
on large structures have been presented (Malekzadeh 
et al. 2015; Meixedo et al. 2021), there is still a need 
for investigating and developing damage identification 
and performance assessment of concrete bridges. For 
most damage identification approaches, the stochastic 
nature of the damage formation and traffic loading is 
not considered simultaneously. Therefore, they cannot 
cope with the random damage scenarios and loading 
cases of existing highway prestressed bridges, e.g., 
where tendon breaks can occur in any section, and 
localized stiffness reductions may be inherited back 
from the construction phase. Moreover, the structural 
response of statically indeterminate structures such as 
prestressed bridges is sensitive to stiffness changes. 
Consequently, a sensor’s abnormal behavior may be 
caused by damages at its location or by a combination 
of damages scattered in the structure. Thus, it is 
paramount that the SHM system of real-size concrete 
structures is designed with appropriate sensor count, 
area coverage, and optimized placement to assess the 
damage distribution correctly. Likewise, a damage 
detection method should be able to evaluate the 
sensors’ damage feature sensitivity to stochastic 
damage scenarios for a reliable damage assessment. 

This paper presents a novel algorithm for the 
real-time analysis and alarm triggering of a high sensor-
count monitoring system deployed on a structure 
subjected to environmental and random dynamic 
loading. The SHM system is based on a long-gauge 
FBG (LGFBG) sensor network and was installed on a 
real-life prestressed concrete national highway bridge in 
Neckarsulm, Germany. Moreover, the authors propose 
a hybrid methodology that combines data-driven and 
finite element model (FEM) updating approaches 
to quantify the actual damage level of discretized 
length segments in terms of stiffness reduction of the 

prestressed concrete bridge in Neckarsulm. First, the 
dynamic strain data are analyzed using PCA to extract 
statistical parameters describing the static structural 
response traffic-induced loads. Next, a FEM of the 
prestressed bridge was implemented to simulate the 
real sensors’ PCA response during traffic loading. At 
last, a sensitivity study is set to evaluate the impact 
of multiple damage scenarios on the extracted PCA 
features. The model updating is then processed using 
a Monte Carlo simulation by optimizing the difference 
between the simulated and measured PCA results. 

Finally, the authors discuss the main contributions 
to the field of SHM as well as the lessons learned during 
the three years of the monitoring campaign. 

SHM system in Neckarsulm 

Characteristics of the monitored bridge 

The monitored structure is a prestressed hollow-
core concrete bridge constructed in 1964. It has three 
continuous spans without coupling joints with a total 
length of 57.00 m (17.00 m–23.00 m– 17.00 m) and 
a width of 11.08 m (Figure 1.a and Figure 1.b). Two 
linear rocker bearings support the superstructure on 
the southern abutment and the northern abutment by 
two roller bearings. Like most prestressed concrete 
structures designed until the 70’s in Germany, the 
bridge was built with prestressing steel known for 
its high vulnerability to corrosion-induced cracking 
(Wüstholz, 2016). 

In addition to the high increase in traffic loads 
compared to the year of construction in 1964 and the 
corrosion-induced cracking risk, other critical problems 
may arise due to construction methods and the design 
standards adopted. Construction failures can already 
appear during construction caused by misplacement of 
the hollow-core bodies and difficulties in compacting 
the surrounding concrete. From the structural point of 
view, the hollow-core bodies prevent two-axis load 
transfer. Likewise, shear forces and temperature loads 
were not considered to the extent that it is deemed 
necessary by today’s standards when the building was 
planned. Finally, the hollow core cannot be examined 
during the building inspection, so any damage inside 
them may not be detected early. 

A FEM was built using the SOFiSTiK Bridge 
Design module. The Bridge Design module has a 
parametric design tool that optimizes the construction 
of the structure’s geometry and allows the easy 
modeling of complex forms, such as curvatures and 
inclinations, and the prestressing system and tendons’ 
geometry. The goal was to build a FEM close to the 
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bridge’s original blueprints. The structure parts were 
defined as beam elements, with 197 beam elements 
for the main deck and 50 for the columns. Figure 1.c 
shows an overview of the FE model in SOFiSTiK. 

Characteristics of the monitoring system 

A fiber-optic (FO) monitoring system based on 
long-gauge FBG (LGFBG) sensors was installed to 
continuously monitor strain and temperature changes 
of the bridge superstructure. The strain monitoring 
in the longitudinal direction consists of two parallel 
measuring lines, each with 27 LGFBG sensors 
connected in a series along the complete longitudinal 
length, hereby defined as northbound sensors (S01 
to S27) and southbound sensors (S28 to S54). For 
every LGFBG strain sensor, an embedded temperature 
sensor is present for temperature compensation on the 
FO. A schema of the sensors is given in Figure 2, and 
overview photos are shown in Figure 3. The LGFBG 
sensors have a gauge length of 2 meters. Additionally, 
35 LGFBG sensors with a gauge length of 1.35 meters 
were installed, forming five lines of sensors in the 
transversal direction. However, they are not in the 
scope of this paper. 

The monitoring system in Neckarsulm has run 
continuously since November 2019 at a sampling rate 
of 200 Hz, generating over 70 thousand measurement 
points per second. The sampling rate was defined to 
optimize the representation of extreme values, such as 
load peaks during a vehicle’s crossing. Considering that 
the average travelling speed at the bridge is 60 km/h 
(and there are speed cameras a few meters from the 
north abutment), a sampling rate of 200 Hz provides 
an 8 centimeter measuring step. A comprehensive 
description of the monitoring system and the data 
management solution can be found in (Sakiyama et al. 

2021a). More information about the LGFBG sensors 
and fiber optic sensing in SHM of concrete structures 
can be found in (Fackler July 2019; Lehmann et al. 
2019; Sakiyama et al. 2021b; Sakiyama et al. 2022). 
More information on data handling and management 
can be found in (Sakiyama et al. 2021a). All the 
implemented scripts in MATLAB are available in 
(Sakiyama 2021a). 

Figure 2 – Schema of the sensors’ configuration 
(bottom view of the superstructure). 

	 (a) 	 (b) 

Figure 3 – Overview of the bridge and the monitoring 
system: (a) Sensor distribution; (b) An LGFBG sensor 

with a 2.05 m gauge. 

	 (b) 	 (c) 

Figure 1 – Monitored bridge: (a) Longitudinal view of the bridge (dimensions in meters); (b) Bridge’s cross-section 
(dimensions in centimeters); (c) FE model in SOFiSTiK: main deck’s cross-section and prestressing tendons.
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Real-time analysis algorithm 

An algorithm was developed and implemented 
for the installed SHM system in Neckarsulm to 
determine whether unexpected changes have occurred 
in the structure based on the real-time analysis of the 
measured strain and temperature data. The algorithm 
is registered for a patent. Statistical values are 
continuously updated from the strain and temperature 
data stream of each sensor over an optimized n-sampled 
moving time window 𝜏𝑛, namely the statistical strain 
mode Mo, the arithmetic strain mean μ, the arithmetic 
temperature mean 𝑇, and the maximal peak-to-peak 
amplitude u. Additionally, the strain data from the time 
window 𝜏𝑛 for every two adjacent sensors p and q are 
analyzed, where the correlation coefficient 𝜌𝑝𝑞(𝜏𝑛) for 
the measured strain 𝑠𝑝(𝑘) and 𝑠𝑞(𝑘) are calculated 
according to the following: 

𝜌𝑝𝑞   	 (1) 

For a continuous monitoring system with high 
sampling rate measurements on coherent structures 
with consistent loading, the correlation coefficient 
between a pair of sensors must remain constant and 
close to one, if they are well correlated, or close to 
zero, if there is no correlation. In the case of adjacent 
sensors disposed along the longitudinal direction of 
a continuous beam, the correlation coefficient should 
remain stationary and close to one until a change 
occurs in the structural system (Catbas et al. 2012). 
The evaluation of the correlation between two sensors 
can also be used to infer already existing geometric 
discontinuities, e.g., hollow bodies or built-in parts, or 
pre-existing damages in the structure. 

Although the correlation coefficient is a 
relevant parameter, it cannot be used alone as 
an indicator of structural change since noise and 
influences from wind or traffic loads, amongst 
others, can also lead to temporary deviations in the 
correlation. Therefore, the implemented algorithm 
is based on a three-step validation to avoid false 
calls and enhance the system’s reliability. Should 
the correlation coefficient for two correlated sensors 
drop below a pre-defined threshold within the time 
window 𝜏𝑛, the maximal peak-to-peak amplitude u 
and the strain-offset through the statistical mode Mo 
of both sensors during 𝜏𝑛 are examined. Under normal 
operation conditions, the peak-to-peak amplitude is 
directly related to the traffic load. Simultaneously, the 
statistical mode represents the stationary strain signal 
offset due to the environment temperature variation 
and can be considered the “unloaded state” of the 

bridge for a short time window. Therefore, suitable 
limit values must be defined for all three indicators. 
Since no load test was performed on the monitored 
bridge, the parameters’ thresholds were taken from 
statistical analysis of a one-year measurement period. 
The correlation coefficient threshold was set as 𝜌 ≤ 
0.90; the peak-to-peak amplitude limit was set up as 
𝑢 ≤ 60 mm/m, and the statistical strain mode variation 
to ∆𝑀𝑜 ≥ 25 mm/m.  

In contrast to the traditional alarm-triggering 
approaches, the monitoring system in Neckarsulm 
does not rely on absolute or singular thresholds. Each 
derived parameter is particularly sensitive to different 
factors: the statistical strain mode to the temperature 
influence, the peak-to-peak strain amplitude to the 
traffic load, and the correlation coefficients to the static 
system behavior. If the three indicators individually 
show critical values, an alarm is triggered, allowing 
the bridge managers to evaluate all three indicators 
together with the complete sensor measurement 
data. The proposed system enables the detection of 
unexpected events by the minute and post-processing 
of the acquired data for long-term analysis of the 
structural integrity and life expectancy. 

More details and results related to the real-time 
analysis algorithm can be found in (Sakiyama et al. 
2021a). 

 

A hybrid methodology for damage 
identification and quantification 

The proposed hybrid methodology is divided 
into two main tasks: the data-driven tasks (SHM 
system) and the model-based tasks (FEM). The 
methodology’s core is the strain feature extraction 
using the PCA method, which is performed for both 
the dynamic strain history from the SHM system 
and the FEM’s simulated results. However, the tasks 
that precede the PCA analysis in each task have 
fundamental differences, especially during the data 
preparation. The SHM system, for example, runs 
uninterruptedly with a high sampling rate (200 Hz) 
and is subject to random load cases and environmental 
and operational variations. Therefore, a clustering 
algorithm was implemented to extract consistent data 
correlating with the simulated FEM results (Sakiyama 
2021b). As for the FEM, the damage locations and their 
intensities are unknown. Hence, sensitivity analysis 
and a Monte Carlo simulation test millions of damage 
combinations and intensities cases. More details on the 
hybrid methodology implementation and results can be 
found in (Sakiyama et al. 2023). 
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PCA analysis of the SHM measurements 

The principal component analysis (PCA) is a 
quantitative method to simplify multivariate statistics 
problems by replacing the original data with a new 
set of variables containing most of the information, 
called the principal components (MATLAB 2020). The 
principal components have no physical meaning, but 
they describe the directions explaining a maximum 
amount of variance, i.e., the axes that provide the best 
angle to see and evaluate the data. Those axes are called 
eigenvectors. There are as many eigenvectors as there 
are variables, with each eigenvector having the number 
of elements equal to the number of variables (e.g., the 
number of sensors) and an eigenvalue associated with it. 
Suppose the eigenvectors are sorted by their eigenvalues 
in decreasing order. In that case, they are arranged in 
order of significance, resulting in an N × N matrix, also 
called the principal components (PC) matrix, where N is 
the number of variables. The first principal component 
comprises the axes’ directions (i.e., the eigenvector) 
that capture each variable’s largest possible variance. 
The second principal component is another set of axes 
perpendicular to the first and accounts for the following 
highest variance. This process continues until the 
number of calculated principal components equals the 
number of variables in the original data. However, it is 
a commonplace that the first few principal components 
explain over 80% of the total variance. Therefore, 
they can be used to understand the driving forces that 
generated the original data (Jaadi 2019). 

The eigenvectors’ elements can be understood 
as a “score” given to each sensor. The larger the score, 
the greater the influence of that sensor on the system’s 
variance and driving forces. Thus, in a stable system, 
the sensors’ scores should remain constant for load 
cases of the same nature. In other words, it is expected 
that the response of a given section in the structure, and 
thus the sensor installed on it, will be the same every 
time a vehicle crosses the bridge. Likewise, if that same 
structural section alters, e.g., due to stiffness degradation, 
the section’s score will change, thus, the eigenvector 
element associated with it. Therefore, the PCA can 
constantly evaluate changes in the system’s behavior 
from the structure’s measured history and allow damage 
identification with the structure under regular operation. 

To assure damage identification reliability, an 
important task is to characterize the load cases that will 
be assessed. For a bridge structure, it is reasonable to 
consider the crossing of a single heavy vehicle as the 
most representative external load. However, vehicles 
with different velocities, weights, lengths, and axle 
numbers cross the bridge at a random pace. Moreover, 
multiple heavy vehicles may cross the bridge 

simultaneously and in opposite directions. Therefore, 
a clustering algorithm was developed to identify when 
a single vehicle crosses the bridge and categorize the 
recorded vehicles’ crossing about their number of axles, 
total length, and travel direction. Representative load 
cases were then filtered and defined from the classified 
traffic information having the following constraints: 

•	 The crossing of a single heavy vehicle (in 
either direction); 

•	 Number of identified axles equal to or higher 
than two; 

•	 Average velocity smaller than 30 m/s (108 
km/h); 

•	 Maximal strain at the bridge’s midpoint 
higher than 20 µm/m. 

From the over 60 thousand recorded crossings, 
11,470 were within those constraints. The vehicles’ 
length was found to be the parameter that impacts 
the strain histories’ response most when considering 
vehicles within the road’s allowed weight. 

With the classified vehicle data, the PCA analysis 
calculates each sensor’s contribution to the structural 
response. Figure 4, e.g., shows the average PCA results 
for 1,476 crossings in the northbound direction (S01 to 
S27) of a vehicle category defined as group 7 (vehicles 
with a total length from 9 to 10 meters). Only the first 
four eigenvectors with higher eigenvalues, i.e., the 
first four principal components (PC), are analyzed as 
they explain over 95% of the system’s variance. Figure 
4.a depicts the first and second principal components’ 
eigenvectors, and Figure 4.b the eigenvectors for the 
third and fourth principal components. The individual 
eigenvectors’ elements corresponding to each sensor 
are depicted with either circles or x-markers and 
connected with lines for visualization. In Figure 4.c, 
the respective first principal component’s eigenvector 
for sensors S07 and S14 are shown for one year and 
four months. Their average values are depicted with 
dashed horizontal lines. Continuously horizontal lines 
define the range plus-minus two times their standard 
deviation for the period. Figure 4.d shows how much 
the first four principal components explain the system’s 
variance. From the first to the fourth PC, the variance 
explained were: 59.4%, 23.9%, 7.3%, and 4.6%. 

FE model sensitivity analysis 

Defining the PC eigenvectors’ sensitivity to 
structural changes in the FE model is necessary to 
use the PCA analysis in the model updating process. 
Moreover, the FE model’s PCA results must be 
compatible and comparable to the PCA results from 
the SHM measurements. Therefore, the following 
workflow is proposed: 
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Define a load train model consistent with a 
vehicle length category to simulate a vehicle’s crossing; 

Establish a FEM that mimics the results from 
the real SHM system; 

Apply the load train on the undamaged FEM 
and run the PCA analysis for its results; 

Introduce damage in various know cross-
sections; 

For each damage case, apply the load train on 
the damaged model and run the PCA analysis for the 
FEM results; 

Analyze the PC eigenvectors (from the first 
four PC) changes between the damage cases and the 
undamaged structure. 

The damage cases were defined in the FEM 
by reducing the bending stiffness of the elements 
corresponding to each of the 27 sensors’ positions at a 
time. Then, the load train was applied for each damage 
case, and the PCA analysis of the FEM results was 
calculated. Therefore, it is possible to assess how the 
principal components’ eigenvectors and their elements 
change for each damage case and which damage cases 
impact the overall structural response more. 

 
FE model updating 

The proposed model updating process is based 
on the range-normalized root mean square error 

(NRMSE) optimization between the PCA results from 
the real SHM system and the FEM. As mentioned, the 
results are similar for the northbound (sensors S01 to 
S27) and southbound (sensors S28 to S54). Therefore, 
only the results for the northbound traffic (sensors S01 
to S27) are presented for representation. 

First, the PCA results from group category 7 
with northbound travel direction are selected as the 
real reference case, and the trainload LM4 type 3 as the 
reference load case for the FEM results. The process 
starts with the NRMSE for the undamaged FEM, which 
will be referenced from now on as the undamaged 
model. Next, a Monte Carlo objective function based 
on the FE sensitivity analysis optimizes the NRMSE by 
applying a combination of stiffness reduction factors 
(FACS) to select an initial damaged model. Finally, 
the initial damaged model undergoes refinements in 
an iterative optimization procedure until the NRMSE 
result converges.  

Figure 5 shows the entire model updating 
process, where the eigenvectors’ average NRMSE for 
each iteration is depicted with blue circles. The first 
iteration corresponds to the undamaged model with 
an average NRMSE of 4.17%. After running the first 
iteration, the eigenvectors’ average NRMSE drops 
to 2.56%, which defines the initial damaged model. 
Next, the refinement process is repeated until the 
18th iteration, when the final damaged model with an 

	 (c) 	 (d) 
Figure 4 – Average results of the PCA analysis for group 7 in the northbound direction (S01 to S27). The lines 

connecting the eigenvectors’ elements are only to improve visualization and have no physical meaning: (a) 
Eigenvectors for the first and second principal components (PC); (b) Eigenvectors for the second and third PC; (c) 
Eigenvectors’ elements for the first principal component over time – sensors S07 and S14; (d) Variance explained 

by the first four PC. 
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average NRMSE of 2.48% is reached. The iterations’ 
average NRMSE gradient is plotted on the right y-axis 
and represented with a continuous orange line. The 
gradient oscillates until the 14th iteration, starting to 
converge to zero up to the 18th iteration. The Monte 
Carlo approach allows the indirect evaluation of 
millions of damage combinations and intensities during 
the model updating process using a quasi-random Sobol 
sequence, which would be unfeasible if a FE simulation 
had to be executed for each damage scenario. For 
example, for the model updating presented in Figure 
5, 144 million damage scenarios could be tested, while 
only 18 FE simulations were necessary. 

Table 1 shows the eigenvectors’ average 
NRMSE value for the undamaged, initial, and final 
damaged models. The final NRMSE reduction between 
the final damaged and undamaged models is shown in 

the last column. The best improvement was in the third 
PC eigenvector, with an NRMSE decrease of 67.75%, 
followed by the first and fourth PC, showing reductions 
of 31.12% and 30.70%, and ending with the second 
PC, which was increased by 3.14%. The eigenvectors’ 
average NRMSE was reduced by 42.33%. 

The stiffness reduction factors (FACS) in the 
final damaged FE model are depicted as a heatmap in 
Figure 6. The values correspond to the total stiffness 
reduction applied in the beam elements at each sensor 
location. A maximum stiffness reduction is observed 
at sensors S16 and S09, with a decrease of 15.5% and 
13.5%, respectively. The beam elements in the first 
spam (S01-S07) have a minor stiffness reduction, with 
reduction values inferior to 2%. Next, the last spam 
beam elements (S21-S27) have stiffness reduction 
values ranging from zero to 9.3%. Finally, the mid-

Figure 5 – Average NRMSE during the model updating iterations. Iteration 1 represents the undamaged model, 
iteration 2 is the initial damaged model, and iteration 18 is the final damaged model. The convergence is shown as 

the NRMSE gradient. 

Table 1 – NRMSE values during the model updating process for the undamaged, initial, and final damaged models. 
The last column shows the NRMSE reduction between the final damaged and undamaged models. 

 
	 Iteration	 Eigenvectors’ NRMSE (%)	 NRMSE final 
	 PC 	 1st – Undamaged model 	 2nd – Initial damaged model 	18th – Final damaged model 	reduction (%) 

1st PC 1.96 1.42 1.35 -31.12 
2nd PC 2.23 2.46 2.30 +3.14 
3rd PC 7.30 2.38 2.34 -67.75 
4th PC 5.70 3.97 3.95 -30.70 

Average 4.30 2.56 2.48 -42.33 

Figure 6 – Stiffness reduction factors (FACS) applied in the beam elements of the final damaged FE model. 
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spam has the most significant reduction factors, 
ranging from zero to 15.15%. The facticity of the 
calibration results was verified by comparing the 
sections’ stiffness reductions with in-field visual data. 
The first spam comprised of sensors S01 to S06 is the 
bridge’s region with the least visible damage, which 
coincides with the small stiffness reduction factors. 

Conclusions 

In this work, the authors presented an overview 
of the deployed SHM system on a prestressed concrete 
bridge in Neckarsulm, Germany, in operation since 
2019. In addition, the proposed novel real-time 
analysis algorithm for detecting unexpected events and 
the hybrid methodology for damage identification was 
presented. From the results and experience acquired 
during the monitoring campaign, the following 
conclusions are drawn: 

•	 A robust and autonomous data management 
system is fundamental to handling a high 
sensorcount monitoring system in real-case 
SHM applications. It must be able to pre-
process the raw data and store it on a reliable 
database to allow efficient data selection 
for post-processing to evaluate long-term 
structural changes. 

•	 The sensor type, area coverage, and 
sensor count are essential to analyze while 
developing and deploying a real-size SHM 
system. In addition, for concrete structures 
with statically indeterminate behavior, a 
representative area of the structure must be 
measured to correctly depict its behavior and 
allow the detection of local damages, such as 
cracks and ruptures in prestressed tendons. 

•	 The proposed real-time analysis algorithm 
addressed many known limitations of real-
case SHM systems. The algorithm runs 
autonomously in runtime inside the acquisition 
software and can detect unexpected changes 
with a low false call rate by the minute. 
Moreover, the algorithm resolution to identify 
the unexpected changes’ location is as small as 
the sensor’s gauge lengths. Finally, the three-
step alarm triggering responds to random and 
dynamic loads. It is free from environmental 
influences and is not tied to pre-defined failure 
modes or absolute limit values. 

•	 In statically indeterminate structures, local 
changes may result from multiple damage 
cases rather than damage located only at 
the sensor presenting abnormal behavior. 
Therefore, individual sensor response 

changes should not be interpreted as damage 
limited to that sensor’s locations. The 
sensitivity analysis in the FEM showed that 
damage at a sensor’s location could impact 
the PCA results at multiple locations. In this 
sense, the model updating process should 
not treat each sensor’s response individually 
but take complete account of the sensor’s 
sensitivity to the structure changes. 

•	 Considering the stochastic nature of damage 
events, it is unfeasible to simulate the 
necessary damage scenarios to optimize the 
FEM objective function accurately. Therefore, 
a Monte Carlo simulation was implemented 
using a quasi-random Sobol sequence with 
millions of combinations for damage location 
and intensity. The Monte Carlo simulation 
is repeated for each FEM simulation step, 
allowing the objective function to converge 
with only 18 FEM simulation iterations. 

•	 The PCA analysis can extract the driving 
principles of the structure’s static response 
during individual vehicles’ crossings and 
eliminate external influences such as 
environmental and operation variations. In 
addition, the damage identification reliability 
was improved by considering not only the 
eigenvector representing the first PC, but 
all eigenvectors explaining up to 95% of the 
static response’s variance. 

The reliable assessment of the structure’s 
damage state can lead to a rational structural conditional 
assessment. In addition, the optimized FEM can be used 
to check if the structure meets safety and serviceability 
requirements continuously. Likewise, visual inspection 
and in situ non-destructive tests could be prioritized 
where damage is most likely present. Finally, the 
structure’s remaining lifetime can be locally evaluated, 
allowing the optimization of interventions and repairs. 
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